If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+13x-42=0
a = 10; b = 13; c = -42;
Δ = b2-4ac
Δ = 132-4·10·(-42)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-43}{2*10}=\frac{-56}{20} =-2+4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+43}{2*10}=\frac{30}{20} =1+1/2 $
| 12t-5t+4t-t-2t=8 | | 6(1-p)-4(4-8p)=-36 | | 10^2+13x-42=0 | | -1+6m+7m=-1 | | 5(y+3)=-3y+23 | | 13m-12m=18 | | 9=3(x+2) | | -6=-3+u/3 | | 21x-9-24=10x+2 | | 3=x/30 | | -7(5v-6)-(6v+5)=37 | | 11p^2=p | | 6a-5a=11 | | -8+5w=-23 | | x-(2/7x+1/3(x-2/7x))=28 | | 4.2g+8=1.2g+20 | | 4x+7+1x=-23 | | 6(n=4)=-18 | | -5w+3(w-2)=-14 | | 2(2p-2)-(2p+6)=-16 | | 273=223-x | | 3x-21=3x-1 | | 15+6x=7x | | 2-u=293 | | 3-4z=-21+8z | | 4x^2+2x^2=400 | | -0.01x^2+0.5x+6.2=0 | | 32=w/3+8 | | 5m4m=72 | | x=x3-2x2-x-1 | | 6=3/5k | | 3b-4=6b=8 |